4,486 research outputs found

    Self-similar Singularity of a 1D Model for the 3D Axisymmetric Euler Equations

    Get PDF
    We investigate the self-similar singularity of a 1D model for the 3D axisymmetric Euler equations, which is motivated by a particular singularity formation scenario observed in numerical computation. We prove the existence of a discrete family of self-similar profiles for this model and analyze their far-field properties. The self-similar profiles we find agree with direct simulation of the model and seem to have some stability

    Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient

    Get PDF
    This paper addresses a multi-scale finite element method for second order linear elliptic equations with arbitrarily rough coefficient. We propose a local oversampling method to construct basis functions that have optimal local approximation property. Our methodology is based on the compactness of the solution operator restricted on local regions of the spatial domain, and does not depend on any scale-separation or periodicity assumption of the coefficient. We focus on a special type of basis functions that are harmonic on each element and have optimal approximation property. We first reduce our problem to approximating the trace of the solution space on each edge of the underlying mesh, and then achieve this goal through the singular value decomposition of an oversampling operator. Rigorous error estimates can be obtained through thresholding in constructing the basis functions. Numerical results for several problems with multiple spatial scales and high contrast inclusions are presented to demonstrate the compactness of the local solution space and the capacity of our method in identifying and exploiting this compact structure to achieve computational savings

    Subsystem Rényi Entropy of Thermal Ensembles for SYK-like models

    Get PDF
    The Sachdev-Ye-Kitaev model is an N-modes fermionic model with infinite range random interactions. In this work, we study the thermal Rényi entropy for a subsystem of the SYK model using the path-integral formalism in the large-N limit. The results are consistent with exact diagonalization [1] and can be well approximated by thermal entropy with an effective temperature [2] when subsystem size M ≤ N/2. We also consider generalizations of the SYK model with quadratic random hopping term or U(1) charge conservation

    TIGS: An Inference Algorithm for Text Infilling with Gradient Search

    Full text link
    Text infilling is defined as a task for filling in the missing part of a sentence or paragraph, which is suitable for many real-world natural language generation scenarios. However, given a well-trained sequential generative model, generating missing symbols conditioned on the context is challenging for existing greedy approximate inference algorithms. In this paper, we propose an iterative inference algorithm based on gradient search, which is the first inference algorithm that can be broadly applied to any neural sequence generative models for text infilling tasks. We compare the proposed method with strong baselines on three text infilling tasks with various mask ratios and different mask strategies. The results show that our proposed method is effective and efficient for fill-in-the-blank tasks, consistently outperforming all baselines.Comment: The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019

    Ωccc\Omega_{ccc} Production in High Energy Nuclear Collisions

    Get PDF
    We investigate the production of Ωccc\Omega_{ccc} baryon in high energy nuclear collisions via quark coalescence mechanism. The wave function of Ωccc\Omega_{ccc} is solved from the Schr\"odinger equation for the bound state of three charm quarks by using the hyperspherical method. The production cross section of Ωccc\Omega_{ccc} per binary collision in a central Pb+Pb collision at sNN=2.76\sqrt{s_{NN}}=2.76 TeV reaches 9 nb, which is at least two orders of magnitude larger than that in a p+p collision at the same energy. Therefore, it is most probable to discover Ωccc\Omega_{ccc} in heavy ion collisions at LHC, and the observation will be a clear signature of the quark-gluon plasma formation.Comment: 6 pages, 5 figure

    Local-set-based Graph Signal Reconstruction

    Full text link
    Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip
    • …
    corecore